PVP 20

Code: 20EE2501A

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

ELECTRICAL SAFETY

(Common to ALL Branches)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.	
					Marks	
	UNIT-I					
1	a)	Demonstrate the principles of electrical	L3	CO2	7 M	
		safety and security measures with few		CO3		
		examples.				
	b)	Examine the factors affecting the severity	L4	CO4	7 M	
		of electric shock in terms of AC and DC				
		shocks.				
	OR					
2	a)	Demonstrate the safety precautions against	L3	CO2	7 M	
		primary and secondary electric shocks and				
		burns.				
	b)	Examine the effect of impulse discharge	L4	CO4	7 M	
		through human body.				

UNIT-II							
3	a)	Examine the requirements of electrical	L4	CO2	7 M		
		safety for wiring and fittings in domestic		CO4			
		appliances.					
	b)	Consider a team of three workers has been	L3	CO1	7 M		
		assigned to install a new submersible pump		CO2			
		in a deep well on a large agricultural farm.		CO4			
		The pump will be used to irrigate fields					
		during the dry season. The installation					
		requires electrical connections, handling					
		heavy equipment and working near water.					
		Summarize the possible potential hazards					
		and preventive measures for installing					
		pumps.					
	T	OR	ı	I			
4	a)	Examine the electrical hazards and safety	L4	CO4	7 M		
		aspects to be taken in a multi-storeyed					
		buildings.					
	b)	Summarise the DO's and DON'T's for	L2	CO1	7 M		
		safety in commercial and residential		CO2			
		utilities against shocks.					
	UNIT-III						
5	a)	Identify the preliminary preparations before	L3	CO3	7 M		
		commencing installations and justify the					
		requirements of safety during maintenance					
		of a plant.					

	b)	Examine about safety aspects and	L4	CO2	7 M		
		precautions during maintenance of a plant.		CO4			
		OR					
6	a)	Analyze the importance of Safety	L4	CO3	7 M		
		documentation during operation and		CO4			
		maintenance of a plant.					
	b)	Compose the procedure for field	L4	CO3	7 M		
		documentation during quality and safety.		CO4			
		UNIT-IV					
7	a)	A chemical manufacturing plant is	L4	CO4	7 M		
		equipped with various electrical systems,		CO5			
		high-voltage transformers, control panels					
		and machinery. Due to the nature of					
		materials handled, there is a high risk of					
		sparks or flashover, which could ignite the					
		flammable atmosphere.					
		Express the possible hazardous zones,					
		electrical sparks, flashover, explosions and					
		possible preventive measures to be adopted.					
	b)	Justify the equipment earthing for the	L3	CO2	7 M		
		scenario described in 7 (a).		CO4			
		section described in 7 (a).		CO5			
	OR						
8	a)	Justify the need for protection against	L3	CO2	7 M		
		energized metal parts.		CO4			
	b)	Illustrate electrical safety in zone-0, zone-1	L2	CO1	7 M		
		and zone-2 of hazardous areas.		CO5			

UNIT-V							
9	a)	Justify the need for installation of fire	L2	CO1	7 M		
		extinguishers in any plant.		CO5			
	b)	Outline the preventive actions against the	L4	CO2	7 M		
		prevention of fire in electrical system.		CO5			
	OR						
10	a)	Explain the need for electrical safety, fire	L2	CO2	7 M		
		detection and alarm system in any plant.		CO5			
	b)	Classify fire extinguishing media and fire	L4	CO2	7 M		
		extinguishers based on their uses.		CO5			